New Mandelbulb Variations

Rule 52 – Power 8 Mandelbulb
Mandelbulb Fractal

Rule 330 – Power 8 Mandelbulb
Mandelbulb Fractal

Rule 330 – Power 8 Mandelbulb
Mandelbulb Fractal

Tad Boniecki emailed me with some new Mandelbulb trig variations. The only changes in these from the usual method of rendering Mandelbulbs is the formula for Triplex Power. For the original Positive SIN Mandelbulb the routine looks like;

function SINTriplexPower(const z:triplex;p:double):triplex;
var rcosphi:double;
begin
radius:=power(radius,p);
theta:=theta*p;
phi:=phi*p;
SINTriplexPower.x:=radius*cos(phi)*cos(theta);
SINTriplexPower.y:=radius*cos(phi)*sin(theta);
SINTriplexPower.z:=radius*sin(phi);
end;

The new methods changed the trig values for X, Y and Z. The main change here is there is only a single trig call for each XYZ component.

function Trig1TriplexPower(const z:triplex;p:double):triplex;
begin
radius:=power(radius,p);
theta:=theta*p;
phi:=phi*p;
Trig1TriplexPower.x:=radius*cos(phi);
Trig1TriplexPower.y:=radius*cos(theta);
Trig1TriplexPower.z:=radius*sin(theta);
end;

Theta and Phi are initialised by using

theta:=arctan2(z.y,z.x);
phi:=arcsin(z.z/radius);

After randomly trying different combinations for a while, I wrote a simple loop to go through all possible combinations of these type of Mandelbulb.

For each of the XYZ components they can be in the form +/- sin/cos(phi/theta). eg -cos(phi) or sin(theta) etc. This gives a total of 512 possible combinations.

Using a Wolfram like rule numbering system, convert a nine digit binary number into decimal. The digits of the binary number correspond to;
1. 0 for X COS, 1 for X SIN
2. 0 for X Phi, 1 for X Theta
3. 0 for +, 1 for –
4. 0 for Y COS, 1 for Y SIN
5. 0 for Y Phi, 1 for Y Theta
6. 0 for +, 1 for –
7. 0 for Z COS, 1 for Z SIN
8. 0 for Z Phi, 1 for Z Theta
9. 0 for +, 1 for –
So rule number 20 is binary 000010100 and converts into the formulas
x:=radius*cos(phi);
y:=radius*cos(theta);
z:=radius*sin(phi);

You can see all 512 variations (all power 8 Mandelbulbs) here. Each of the image names show the rule number and corresponding trig calls.

From the 512 possible results, I ignored most of them (too spikey, too similar to others, too lathed, or assymetrical) and picked the 20 most interesting results.

Rule 50

Mandelbulb Fractal

Rule 52 (This is also the rule for the image at the top of this post)

Mandelbulb Fractal

Rule 53

Mandelbulb Fractal

Rule 59

Mandelbulb Fractal

Rule 61

Mandelbulb Fractal

Rule 114

Mandelbulb Fractal

Rule 116

Mandelbulb Fractal

Rule 117

Mandelbulb Fractal

Rule 124

Mandelbulb Fractal

Rule 176

Mandelbulb Fractal

Rule 177

Mandelbulb Fractal

Rule 188

Mandelbulb Fractal

Rule 280

Mandelbulb Fractal

Rule 330

Mandelbulb Fractal

Rule 369

Mandelbulb Fractal

Rule 370

Mandelbulb Fractal

Rule 377

Mandelbulb Fractal

Rule 412

Mandelbulb Fractal

Rule 413

Mandelbulb Fractal

Rule 465

Mandelbulb Fractal

All of these new variations are now avilable in Visions Of Chaos.

Tad also had a few other new variations with more trig calls I will experiment with and explain in a future post.

Jason.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s