Cyclic Cellular Automata

Cyclic Cellular Automata were first developed by David Griffeath at the University of Wisconson.

The rules are relatively simple;

1. Take a 2D grid of cells.
2. Select a maximum number of states each cell can have.
3. Select a threshold value.
4. Fill the cells with random state values between 0 and (maximum states-1).
5. At each step of the simulation every cell follows these rules;
a) Count how many neighbouring cells (Moore or Von Neumann neighborhoods) surrond the cell with a value of the current cell’s state + 1
b) If the count is greater or equal to the threshold value then the cell state is incremented by 1
6. Repeat this process as long as you want to.

By following those steps you can get emergent behaviour of spirals and other patterns. Here are a few examples (click the title to watch it in HD format on YouTube);

The different rules (every 10 seconds) in the above video are;
313 (David Griffeath)=1/3/3/M
Amoeba (Jason Rampe)=3/10/2/N
Black vs White (Jason Rampe)=5/23/2/N
Black vs White 2 (Jason Rampe)=2/5/2/N
Boiling (Jason Rampe)=2/2/6/N
Bootstrap (David Griffeath)=2/11/3/M
CCA (David Griffeath)=1/1/14/N
Cubism (Jason Rampe)=2/5/3/N
Cyclic Spirals (David Griffeath)=3/5/8/M
Diamond Spirals (Jason Rampe)=1/1/15/N
Fossil Debris (David Griffeath)=2/9/4/M
Fuzz (Jason Rampe)=4/4/7/N
Lava Lamp (Jason Rampe)=3/15/3/M
Lava Lamp 2 (Jason Rampe)=2/10/3/M
Maps (Mirek Wojtowicz)=2/3/5/N
Perfect Spirals (David Griffeath)=1/3/4/M
Stripes (Mirek Wojtowicz)=3/4/5/N
Turbulent Phase (David Griffeath)=2/5/8/M
The 2/5/8/M refers to Range/Threshold/States/Neighborhood.

The same principle works in 3D too. You just need to expand the neighborhood checks to cover 3D space.

2D and 3D CCA are now included in the latest version of Visions Of Chaos.


Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s